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Alternate Proofs on Turing Machines

We've gone over many proofs exploring why certain problems are impossible to solve with com-
puters. These results are fundamental in theoretical computer science and, appropriately, there are 
many different ways to prove them. This handout includes some alternate proofs of some of the 
results that we've covered. I hope this will shed more light on why the results are true. I also hope 
that this handout will give you some examples of proofs involving Turing machines that you can 
use as a reference in the problem sets.

Proving LD  RE∉
The first “impossible problem” we encountered was LD, which was defined as

LD = { ⟨M  | ⟩ M is a TM and ⟨M   (⟩ ∉ℒ M) }

This language is the diagonalization language you get if you diagonalize against the languages of 
all Turing machines. The proof we did in lecture was a standard diagonalization proof along the 
lines of the ones we've done in the past. It's also possible to prove this result in a different way by 
thinking more directly about what a TM for LD would have to do on itself.

If R is a recognizer for LD, then (ℒ R) = LD. This means that for any TM M, we have ⟨M   (⟩ ∈ ℒ R) 
iff ⟨M   ⟩ ∈ LD. So what happens, in particular, if we focus on the machine R and its encoding ⟨R ?⟩  
Substituting in ⟨R  for ⟩ ⟨M  in the preceding step, this means that ⟩ ⟨R   (⟩ ∈ ℒ R) iff ⟨R   ⟩ ∈ LD. Now, 
remember that  LD is the set of all descriptions of TMs that don't accept their own encodings, 
which means that ⟨R   ⟩ ∈ LD iff ⟨R   (⟩ ∉ ℒ R). But this means ⟨R   (⟩ ∈ ℒ R) iff ⟨R   (⟩ ∉ ℒ R), and that's 
definitely troubling!

We can formalize this as follows:

Proof: By contradiction; suppose that LD  ∈ RE. This means that there is some recognizer R where 
(ℒ R) = LD. Since R is a recognizer for LD, we know for any TM M that ⟨M   ⟩ ∈ LD iff ⟨M   (⟩ ∈ ℒ R). 

By definition, we know for any TM M that ⟨M   ⟩ ∈ LD iff ⟨M   (⟩ ∉ ℒ M). Therefore, combined with 
the above statement, we see for any TM M that ⟨M   (⟩ ∉ ℒ M) iff ⟨M   (⟩ ∈ ℒ R). In particular, this 
means that ⟨R   (⟩ ∉ ℒ R) iff ⟨R   (⟩ ∈ ℒ R), which is impossible. We have reached a contradiction, so 
our assumption must have been wrong. Thus LD  ∉ RE. ■

In many ways this proof is more direct than the one from lecture. I opted to use a different proof in 
lecture because I thought it would more directly call back to our diagonalization proofs from ear-
lier in the quarter, though I think this particular proof is more elegant.
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There's yet another way you can prove this result. The definition of LD given above is phrased in 
terms of the languages of Turing machines, but it can also be expressed equivalently in terms of 
the behavior of various TMs on their own encodings. In particular:

LD = { ⟨M  | ⟩ M is a TM and M does not accept ⟨M  }⟩

This gives a more “mechanical” description of what LD is – it's the set of all descriptions of TMs 
that don't accept their own descriptions. We can prove  LD  ∉ RE by using a more “mechanical” 
proof by talking about what a recognizer for LD would have to do when run on itself. Let's suppose 
that R is a recognizer for LD. Then:

• If R accepts ⟨R , then ⟩ ⟨R   ⟩ ∉ LD, and so R doesn't accept ⟨R .⟩

• If R doesn't accept ⟨R , then ⟩ ⟨R   ⟩ ∈ LD, and so R accepts ⟨R .⟩

That's a problem – R accepts itself iff it doesn't accept itself! That gives us a contradiction, so we 
know that there can't be a TM like R whose language is LD. Here's a formal version of that proof:

Proof: By contradiction; assume that LD  ∈ RE. That means that there is some recognizer R where 
(ℒ R) = LD. Consider what happens when we run R on its own encoding ⟨R . We consider two op⟩ -

tions:

    Case 1: R accepts ⟨R . This means that ⟩ ⟨R   (⟩ ∈ ℒ R) = LD. Since ⟨R   ⟩ ∈ LD, we see that R does
     not accept ⟨R . This is impossible, since in this case we're assuming that ⟩ R accepts ⟨R .⟩

    Case 2: R does not accept ⟨R . By definition of  ⟩ LD, this means that ⟨R   ⟩ ∈ LD. Since  R is a
     recognizer for LD, we see that R must accept ⟨R . This is impossible, since in this case we're⟩
      assuming that R does not accept ⟨R .⟩

In both cases, we reach a contradiction, so our assumption must have been wrong. Therefore, we 
know that LD  ∉ RE. ■

Proving ATM  ∉ R

Our first example of an undecidable problem was ATM, the language of the universal Turing ma-
chine. This language is defined as

ATM = { ⟨M, w  | ⟩ M is a TM and M accepts w }

The proof that ATM is undecidable that we covered in lecture was built on top of several other re-
sults, namely that  ATM  ∉ RE, that  R is closed under complementation, and that  R  ⊆ RE. As I 
mentioned in lecture, this is not the standard proof of this result. Typically, this result is proven 
“all at once” by combining together the necessary pieces of these earlier proofs together. The re-
sulting proof usually works by showing that a decider for ATM will lead to a the construction of a 
paradoxical machine that accepts itself iff it doesn't accept itself.

Here is an alternate proof that ATM  ∉ RE that works by using this approach:
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Proof: By contradiction; suppose that ATM  ∈ R. This means that there must be a decider D where 
(ℒ D) = ATM.

Now, consider this new machine TM H:

H = “On input ⟨M , where ⟩ M is a TM:

Run D on ⟨M, ⟨M .⟩⟩

If D accepts ⟨M, ⟨M , then ⟩⟩ H rejects ⟨M .⟩

If D rejects ⟨M, ⟨M , then ⟩⟩ H accepts ⟨M .”⟩

First, notice that H is a decider. To see this, note that on any input ⟨M , the TM ⟩ H first runs D on 
the string ⟨M, ⟨M⟩ . Since ⟩ D is a decider, D halts when run on this input. As soon as D halts, the 
machine H halts as well. Therefore, H halts on all inputs.

Now, consider what happens when we run H on ⟨H . We consider two options:⟩

    Case 1: H accepts ⟨H . This means that ⟩ D rejects ⟨H, ⟨H . Since ⟩⟩ D is a decider for ATM, this
     means that H does not accept ⟨H . But this is impossible, since we're assuming that  ⟩ H does
       indeed accept ⟨H .⟩

    Case 2: H rejects ⟨H . This means that ⟩ D accepts ⟨H, ⟨H . Since ⟩⟩ D is a decider for ATM, this
       means that H accepts ⟨H . But this is impossible, since we're assuming that ⟩ H does not accept
       ⟨H .⟩

In both cases we get a contradiction, so our assumption must have been wrong. Thus ATM  ∉ R. ■

I personally think this proof is trickier to follow than the one from lecture, though it is more self-
contained. It does give a good example of the sort of “iff chain” reasoning that often happens 
when working with Turing machines.

Proving HALT  R∉
The undecidability of the halting problem is a hallmark result in theoretical computer science and, 
appropriately, it's been proven in many, many different ways.

Recall that HALT is the language of all TM/string pairs where the TM halts on the input string:

HALT = { ⟨M, w  | ⟩ M is a TM that halts on w }

The proof that we went over in lecture essentially used a mapping reduction (which we'll explore 
on Friday) to show that a decider for HALT could be used to build a decider for ATM, which is im-
possible. There's another way to show that HALT is undecidable that also works by building a de-
cider for ATM out of a decider for HALT, but by going along a different route that in some ways 
might be more instructive.

The intuition behind the proof is the following: the “hard part” of ATM is handling the case where 
the input TM M goes into an infinite loop when run on the input string w. If M never looped on w, 
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then we could just run M on w and see whether it accepts or rejects without having to worry about 
M looping. If HALT were decidable, then we could patch this hole by using a decider for HALT to 
check whether the input TM would halt on w. If so, we can just run the TM on w and see what 
happens. If not, then we know for a fact that M isn't going to accept w, so we can just reject the in-
put without any more processing.

This gives rise to the following proof:

Proof: By contradiction; assume that HALT  ∈ R. Then there is a decider H where (ℒ H) = HALT. 
Now, consider the following TM D:

D = “On input ⟨M, w , where ⟩ M is a TM and w is a string:

Run H on ⟨M, w .⟩

If H rejects ⟨M, w , then ⟩ D rejects ⟨M, w .⟩

Otherwise (that is, H accepts ⟨M, w ), run ⟩ M on w.

If M accepts w, then D accepts ⟨M, w .⟩

If M rejects w, then D rejects ⟨M, w .”⟩

We claim that  D is a decider for ATM. Since we know ATM  ∉ R, this is impossible and we have 
reached a contradiction. Therefore, our assumption must have been wrong, so it must be the case 
that HALT  ∉ R.

To prove that D is a decider for ATM, we first prove that D is a decider, then that (ℒ D) = ATM. To 
see that D is a decider, consider the operation of D on an arbitrary TM/string pair ⟨M, w . First, ⟩ D 
runs the decider H on ⟨M, w , which must halt. If ⟩ H rejected ⟨M, w , then ⟩ D rejects ⟨M, w  and⟩  
halts. Otherwise, H accepts ⟨M, w , and since ⟩ H is a decider for HALT, we know that M halts on 
w. Therefore, when H runs M on w, we are guaranteed that M will halt on w. Since D halts as soon 
as M halts on w, we know that in this case D must halt on ⟨M, w . Since our choice of ⟩ ⟨M, w  was⟩  
arbitrary, this means that D halts on all inputs, so D is a decider.

To prove that (ℒ D) = ATM, note that D accepts ⟨M, w  iff ⟩ H accepts ⟨M, w  and ⟩ M accepts w. As 
mentioned above, we know that H accepts w iff M halts on w. Therefore, we see that D accepts 
⟨M, w  iff ⟩ M halts on w and M accepts w. Note that the statement “M halts on w” is subsumed by 
the statement “M accepts w,” so this means that D accepts ⟨M, w  iff ⟩ M accepts w. Finally, note 
that M accepts w iff ⟨M, w   A⟩ ∈ TM, so we see that D accepts ⟨M, w  iff ⟩ ⟨M, w   A⟩ ∈ TM. Therefore, 

(ℒ D) = ATM, as required. ■


